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The refraction of sea waves in shallow water 
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SUMMARY 
This paper considers the changes that occur in the character 

of short-crested sea waves when they are refracted by a 
shallowing depth of water. Besides a change in mean wave- 
length and direction there is also a change (usually an increase) in 
the mean length of the crests. If the waves approach obliquely 
they become skew, that is, the crests become staggered one behind 
another. 

When a short-crested sea is superposed on a long-crested 
swell, refraction tends to amplify the longer waves more than the 
shorter ones. This also produces an increase in the mean length 
of the crests. 

Numerical examples are given. 

INTRODUCTION 
It is often noticed that sea waves tend to become more regular as they 

approach a coast, and that the length of the crests perpendicular to the 
direction of propagation appears to increase. Jeffreys (1924) considered 
two possible explanations : (i) non-linear effects reduce the short-crested 
waves by breaking, while the long-crested waves, being of smaller. amplitude, 
do not break until .later ; (2) the reduction in depth has a greater magnifying 
effect on the long-crested waves than on the short-crested waves of the same 
period. On the basis of theoretical analysis, Jeffreys decided in favour of 
the first alternative. 

There are other possible causes, however. The most important of these, 
now to be considered, is the refraction of the waves on entering shallow water. 

It is well known that when waves enter shallow water their velocity and 
wavelength decrease ; also, if they approach obliquely, the direction of the 
crests changes so as to become nearly parallel to the shore. But in general 
the crest-length also changes. If the water surface were a simple sine-wave, 
the wave6 would be infinitely long-crested and would remain so after re- 
fraction. But in fact the sea surface must be thought of as the sum of a 
whole spectrum of harmonic components having different wavelengths and 
directions ; the ' long-crestedness ' depends on the angular deviation of the 
wave components from the mean direction : the smaller the deviation, the 
greater is the ratio of mean crest-length to mean wavelength. Refraction 
thus affects the crest-length in the following two ways.. 
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(1) Wave components of the same wavelength and different direction are 
'collimated' so as to become more nearly,parallel to the coast and to one 
another ; this tends to diminish the angular deviation of the wave components 
and to make the waves more long-crested ($ 2 (a)). 

(2) Wave components in the same direction but of different wavelength 
are refracted through different angles and so separated (as'in the separation 
of white light by a prism) ; this tends to increase the angular deviation of 'the 
wave components and to make the waves more short-crested ($ 2 (b)). 

The two effects (collimation and separation) are illustrated in $ 2  by 
considering a sea made up of just two harmonic components. The full 
representation of the sea surface, which requires a continuous spectrum of 
harmonic components, is discussed in $3. In  general, the mean wave- 
length, mean crest-length, etc., must be defined statistically (see Longuet- 
Higgins 1956a"). The changes in these quantities are deduced in $ 4  and 
$ 5 ,  and a numerical example is given in $ 6. 

One of the more interesting consequences of refraction is that waves 
which were originally symmetrical about their mean direction become 
skew, i.e. the principal direction of the wave envelope is in a different 
direction to that of the crests. The waves then tend to line up in an dchelon 
pattern, each wave crest being displaced (on the average) sideways relative 
to the preceding crest. 

The change in the amplitude of the waves is also studied, and it is shown 
that the increase in amplitude may itself be considered as a result of refraction. 

Finally, in $7,  we consider what happens when two distinct bands of 
swell, of different wavelength, are present in the spectrum. For example, 
swell from a distant storm may be present simultaneously with shorter waves 
due to local winds. In  general, the longer waves are amplified more than the 
shorter waves, and so, since the longer waves are usually also more long- 
crested, there is an increase in the average crest-length. We calculate the 
extent of this increase and give a numerical example. 

1. REFRACTION OF A SIMPLE WAVE TRAIN 

Consider a single, infinitely long-crested train of waves of wavelength 
A = 2n/w and period T = 2n/u approaching a straight coast at an angle 0 to the 
normal (see figure 1 (a)). If the depth of water varies gradually the wave- 
length will be related to the local depth h by the equation (see Lamb 1932, 
ch. 9) U2 

(1.1) w tanh wh = - = wt, 

where g denotes gravity and a prime ( I )  denotes the value in deep water. 
The direction 8 will depend on the wavelength according to Snell's law : 

bin0 h wt 
sine' A' w ? 

(1.2) 

(1.3) 

-= -=-  

which may also be written 

that is, the wave-number parallel to the coast is a constant, 
w sin e = w' sin 8' = constant, 

* T h i s  paper will subsequently be referred to as I. 
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We shall find it useful to represent the waves by a point P in a wave- 
number diagram as in figure 1 (b): the direction of OP is opposite to the 
direction of propagation of the waves, and the length of OP is w, the wave- 
number in the direction of propagation. It may easily be shown that the 
wave-number in any other direction is the projection of OP in that direction ; 
in particular the coordinates 

are the wave-numbers perpendicular and parallel to the coast. 
(u, V )  = (W cos 8, w sin 8) (1.4) 

, 
U. P’ P 

(4 Ib) 

Figure 1. (a) A regular, long-crested train of waves approaching a straight coast ; 
(b)  its representation in the wave-number diagram. 

Let P’ = (u’, v’), represent the wave train in deep water, and P = (u,:v) 
the refracted waves. Then, by (l.l), 

cothwh > 1, OP w 
OP’ w‘ 
-= -=  (1.5) 

and, by (1.3) 

so that the effect of refraction is to displace the representative point P away 
from the origin and parallel to the axis of u. 

v = v’, (1.6) 

2. T W O  LONG-CRESTED WAVE TRAINS 
Two effects of refraction can be simply seen by considering the sum of a 

pair of long-crested wave trains in the following two cases. 
(a) Wave trains having the same wave-number w and slightly different directions 

The sum of two such trains is a short-crested pattern whose wave-number 
is w in a direction perpendicular .to the crests and wS0 along the crests (see 
figure 2(a)) .  Let 

e and e+68 

The ratio of the wavelength to the crest-length is 68. 
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the two wave trains be represented by points P, and P, in the wave-number 
diagram (figure 2(b)) .  Also 
P,P, = w 68, the wave-number along the crests. Now refraction displaces 
P, and P, parallel to the u-axis, and 

Then OP, = OP, = w and L P,OP, = 68. 

(2.1) 
P,P, Gvsec8 cos8' 
Pip;, BVsec8' C O S ~  

< 1 ,  -= - -  -- 

Figure 2. (a) The pattern of crests formed by two wave trains of equal wavelength 
and slightly different direction ; (21) their representation in the wave-number 
diagram. 

since 8 < 8'. Therefore, refraction increases the length of the crests, 
though the wavelength is diminished. The angle between the component 
wave trains, which is equal to PIP,/OP,, is also diminished. 
(b) Wave trains having the same direction 8 but different wave-numbers w and 
w+6w 

The sum of two such waves is a pattern which is long-crested but of 
varying amplitude, the waves coming in ' groups' of length T / ~ w .  In the 
wave-number diagram the unrefracted waves are represented by two points 
Pi and Pl on the same line through the origin (figure 3 (b)) and with 
Pip; = 6w'. However, (if P, and P, represent the refracted waves) P,P, 
does not in general pass through 0; for in that case we should have 
Swlw = 8v/v = 6w'/w' and so 6wf/6w = w'/w, whereas in fact we have!, on 
differentiating equation (l.l), 

6W' W' - = tanh wh + wh sechzwh > tanh wh = - . 
6W W 

Hence P,P, subtends a positive angle at the origin, and the refracted wave 
trains have differing directions. Thus the refracted pattern is short-crested, 
i.e. the crest-length is reduced. 

(2.2) 
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Since the refracted waves are also of different wavelength, the resulting 
pattern is 'staggered' (see I). A similar effect has been pointed out by 
Stoneley (1935) in connection with seismic waves refracted at a discontinuity. 

V 

6v' 

V' 

Figure 3. (a) The pattern of crests formed by two wave trains initially in the same 
direction and of slightly different wavelength ; (b) their representation in the 
wave-number diagram. 

3. GENERAL REPRESENTATION 

To describe actual, irregular sea waves we use the representation 
described in I. I t  is assumed that the waves in any given locality are 
statistically uniform, and that they contain wave components of every possible 
wavelength and direction. Corresponding to each wave number (u, v )  we 
define the energy density E(u, v )  such that E dudv is the energy associated 
with wave-numbers in a small region dudv of the (u,v)-plane. Thus the 
total energy per unit of the sea surface, for example, is given by 

m r a  

(3.1) ,U = f [ E(u,v)dudv. 
J - m J - m  

Many of the frequency characteristics of the sea surface may be derived 
in terms of E (see I). Here we shall make the assumption that the spectrum 
is narrow, i.e. that the energy E is mainly clustered near the mean wave- 
number (;,;), defined by 

lImjrn (u-Z)Edudv = lymjra (v-Z)Edudv = 0. (3.2) 
- m  -LO 

The waves are then more or less long-crested, having a mean wave-number 
G in the direction B perpendicular to the crests, where 

(Z, U )  = (Zcosjj,GsinB) (3.3) 
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(see figure 4). Let coordinates (t, 7) be taken with origin at the mean point 
and with 5 and 9 measured along and perpendicular to OF, so that, approxi- 
mately, 

Figure 4. The effect of refraction on a continuous spectrum. 

say. We define the moments 

U 

an interpretation of which is as follows (see I). 

where v is the r.m.s. proportional spread in wave-number in a direction 
perpendicular to the crests ; v is inversely proportional to the average number 
of waves in a ' group '. 

First, 

Pa0 = /.LZ'V~, (3.6) 

Secondly, 
(3.7) -a a, 

PO2 = Pw 
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where y is the r.m.s. angular deviation of the waves from their mean 
direction ; it may be shown that 

( 3 4  
Nmin  

Nmax ’ Y =  - 

where Nmax is the average number of times per unit distance that the surface 
crosses a line at mean level perpendicular to the crests, and Nmln is the 
corresponding number for a line parallel to the crests. Thus if X is the mean 
wavelength and rC the mean crest-length, 

Thirdly, 
P11 = PW -2 (Y 2- Y2)PY (3.10) 

where q is a measure of the skewness of the waves ; it may be shown that 
q = 9 tan 28, (3.11) 

where /3 is the angle between the mean direction of the waves and the principal 
direction of their envelope (see I). 

X = 2/Nma,, K = 2/Nmin, y = QK. (3.9) 

4. CHANGES DUE TO REFRACTION 

If the wave amplitude is sufficiently small, the energy corresponding to 
each wave-number is refracted independently. Further, it is assumed that 
the energy reflected from the coast is negligible. Under these conditions, 
it may be shown (see Longuet-Higgins 1956 b) that if E’(u, w )  denotes the 
energy density before refraction and E(u, w )  the energy density after re- 
fraction, then E is related simply to E’ by 

where (u, v) is related to (u’, w‘) as in $1.  Hence a contour of energy density 
E’ = constant is transformed into a contour E = constant (see figure 4), 
though the area enclosed by the contour may be changed, as also may be its 
shape. 

We shall consider how the parameters p, Y, y, q defined above will change 
on refraction of the waves. Let (p, 7’) be coordinates defined for the un- 
refracted waves similarly to (F,$) for the refracted waves (equations (3.4)). 
Now, to the first order of small quantities, 

E(u,w) = E’(u’,v’), (4.1) 

dw 6w = - 6w‘, dw’ 
where from (1.1) 

1 - dw 
dw‘ - tanh wh+ wh sech2wh ‘ 

Also, on differentiating (1.2) logarithmically, we have 
68 68’ - - - = 6w-6w’, 

tan 8 tan 8‘ 
and so, using (4.2) and (1.2), 

w tan8 
dw‘ wt tan& w~ = (z - *)tanoSw’+ - - w* 68’. 

(4.4) 

(4.5) 
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Equations (4.2) and (4.5) may be written 
4 = a115‘ + ~1217’ ,  

17 = U Z l Y  + a 2 2  rl’, 
where 

Therefore, 

Over the narrow region of integration, all, a12, uzl, aZ2 may be treated as 
constants. Hence, on changing the variable in (3.1) and remembering (4.1), 
we have 

similarly, from (3.5) we find . 
P = Qlla22P’; (4.9) 

(4.10) I Pzo = a11 a22(aL P a ,  

P11 = all a22(a11 a21 Pkl +all a22 P a ,  

Po2 = all a22(a221 PLO + 2a21 a22 Pi1 + 4 2  P a ,  

where p’ is the initial value of p, and so on. 
follows : 

Thus v,  q, y are transformed as 

(4.11) W ’2 

W ‘2 

W2 

(v2 - y2)q = --& [a11 a21 V t 2  +all a22(v’2 - y’2)q’l, 

y2 = - [ail v’2 + Za,, a22(v’2 - ~ ’ ~ ) q ’  + ai2 y’”, 

(the bar in W has been dropped). We may assume that q’, the skewness of 
the unrefracted waves, is zero. Then, on inserting the values of all, a12, a22 
in (4.1 l), we have 

1 v2 = r2y’2 

where 

($-y2)q = r(1 -r)tan0 v ’ ~  (4.12) 

w‘ dw 
w a  

y = -  (4.13) 

and 8 is given by Snell’s law (1.2). 
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5.  DISCUSSION 
The first of equations (4.12) gives 

v = rv', 
that is to say, the average number of waves in a group is divided by r on 
refraction. Now, from (4.13), the factor r may be written 

since, if the frequencies are preserved, o = u'. But u/w and doldw are the 
phase-velocity and group-velocity respectively, whose ratio varies from 
2 in deep water to 1 in shallow water (see Lamb 1932, ch. 9). Thus in 
shallow water r = 112, and hence the number of waves in a group is doubled 
when the waves reach shallow water. (This effect was noticed by Barber 
(1950) in the case when the waves approach the shore normally.) However, 
if the waves were recorded in time at a fixed point, the groups in the record 
would appear to have the same average number of waves, regardless of the 
depth of water: 

Equations (4.12) show that v and p depend only on v', the initial spread 
in wave-number, but that y has a contribution from both v' and y'. By 
setting y' = 0 and v' = 0 in turn, we see that y may be either greater or less 
than y'. 

The average length of the crests is given by 
z = 3/y = 27r/yw. (5.3) 

S o  from the third of equations (4.12) we have 

which shows that the mean crest-length, also, may be either increased or 
decreased by refraction. 

A particularly simple case is when 8' is small, or when the wave crests 
are nearly parallel to the coast. 

approximately, and from (4.12) and (5.4), 

Then from (1.3), 
we = w'e', (5 .5 )  

(assuming v'e' < y'). Thus the average crest-length remains unchanged, 
although the average wavelength and the angular deviation are both 
diminished. 
The wave amplitude 

If a 
denotes the r.m.s. wave amplitude, the mean energy per unit area of the sea 
surface is &pga2. But this is equal to p, by definition. Therefore, from 

The change in amplitude of the waves may be found as follows. 

(4.91, 

and 
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Equation (5.7) is a generalization of the well-known formula (Burnside 1914) 
for the change in amplitude of waves approaching a coast normally; on 
setting 8 = 8' = 0, we obtain Burnside's equation (ii). Since, in general 
cos 8 > cos 8') we deduce that waves approaching a coast obliquely are 
amplified less than those approaching normally, 

T o  facilitate numerical calculation, we have plotted in figure 5 graphs of 
W' - -  - tanh wh 
W 

(5.9) 
and 

as functions of w'h = a2h/g. 

T = (1 + 2wh cosech 2wh)-1 (5.10) 
The amplitude function (y = (rw/w')1'2 (5.11) 

is also shown. When w'h is large, these all tend to unity. 
When w'h is small, we have 

(as was first shown by Green, 1838). 
mation is only valid so long as 

However, the present linear approxi- 

a Q g w2h3 (5.13) 

(Stokes 1847, Ursell 1953), which implies that 

(5.14) 

If this condition is not satisfied, the waves will depart from the sinusoidal 
form, and may become solitary waves or may break. 

6. NUMERICAL EXAMPLE 

Suppose that waves of mean period 10 sec approach the shore initially at 
an angle of 60" to the normal : 

2T 0 2  
u = -sec-l, w' = - = 0.012ft-1, el = 600. 

10 g 
When the waves have reached water of depth h = 20ft we have w'h = 0.25 
and so, from figure 5, 

W' 1/2 _ -  - 0.48, T = 0.54, r;) = 1-07. 
W 

The angle 8 between the wave crests and the shore is given by 
sin 8 = 0.48 sin 60" = 0.42, 

Let the initial spread in wave-number be one-quarter of the mean wave- 
number, and the initial spread in direction be 15": 

8 = 24". 

v' = 0.25, y' = 0.26. 
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Then, assuming that q' = 0, we have from (4.12) 
v ='0*135, y = 0.088, q = 0.68. 

173 

Therefore, the angular spread is reduced by a factor y/y' = 0.30. 

2 - 5  

2.0 

0 . 5  

0.0 

Figure 5. Graphs of the functions w'lw, r and (dw/dw')lJa. 

Taking account of the reduction in mean wavelength(w'/w = 0-48), we see 
that the mean length of the crests is multiplied by 1.6, i.e. increased by 60%. 

From (3.10), we find for the angle of skewness 
/3 = 27") 

a = 0.79a'. 
and from (5.8), 
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Thus the r.m.s. wave amplitude is reduced by 21 %, although if the waves 
approached the coast normally it would be increased by 7%. 

Equation (5.14) shows that, for the analysis to be valid, the amplitude ur 
in deep water must be small compared with 11 ft. 

7. A MIXED SPECTRUM 

So far we have supposed that the distribution of energy is narrowly 
restricted in wave-number and direction. It is interesting, however, to 
consider the changes due to refraction when the sea consists of a long- 
crested swell superposed on short-crested local waves. Under these 
conditions, the swell may be expected to be amplified more than the local 
waves, producing an increase in the length of the crests. 

Let the energy function E consist of two parts, El and E2, which represent 
respectively a narrow band of swell, of total energy pl and a local, fairly 
short-crested, sea of total energy p2. 

For simplicity, we suppose that both systems of waves are approaching 
the coast normally. 

The average number of zero-crossings along a line parallel to the crests 
will be denoted simply by N (so that 1\1= Nmin). It can be shown (see I} 
that 

So, if Nl and N, denote the corresponding numbers for the two component 
systems, 

giving 

or, if ul, u2,are the corresponding r.m.s. wave amplitudes, . 

The amplitudes and wave-numbers are transformed (approximately) as 
follows : 

where wl, w;, w,, w; are the values of w and w' for the two groups. 
These relations enable us to determine N in terms of the initial values of 
a,, u2, N ,  and N2. 
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For example, suppose that the mean periods of the two bands are 12 sec 
and 6sec, respectively, and their r.m.s. angular widths are 10" and 20". 
Then we have 

w; = 8.5 x 10-3ft-1, N' = 4.7 x 10-4fr1, 
W ;  = 3.4 x 1P2fr1, AT; = 3.8 x 10-3fr1, 

and, if the wave amplitudes are initially equal, the crest-length is given by 

W 2  = *(AT; + N i )  = 7:2 x f r 2 .  
By the time the waves have reached water of depth loft. the amplitudes of 
the swell and the local sea are increased by 1.35 and 1-01 respectively, and 
we find 

N 2  = 6.3 x 10-sft-2. 

Hence the mean crest-length is multiplied by 1.07, i.e. increased by 7%. 

8. CONCLUSIONS 
We have shown that, when a band of waves which has a fairly narrow 

spectrum in both wavelength and direction enters shallow water, the 
following changes occur. 

(1) The mean wavelength decreases and - the direction of the crests 
becomes more nearly parallel to the shore. 

(2) The crests become 'staggered', i.e. the envelope of the waves is 
in a different direction to the direction of the crests. 

(3) The mean crest-length may either increase or decrease, usually the 
former : if the waves are incident normally, the average crest-length remains 
unaltered. The ratio of crest-length to wavelength almost always increases. 

(4) The number of waves in a group is increased, being multiplied by 2 
when the waves reach shallow water. 

( 5 )  The amplitude of the waves first diminishes and then increases, 
being proportional to h-lI4 in shallow water. The increase is less for waves 
approaching obliquely. 

If the spectrum of the waves is not narrow, or if more than one narrow 
band is present, we may expect that the longer waves will eventually be 
amplified more than the shorter ones. Since the longer waves usually 
have a much greater crest-length than the shorter waves, this leads to an 
increase in the crest-length. 

The above conclusions suggest two possible reasons for the frequently 
observed change in crest-length as the waves approach the shore. The 
first is the simple effect of refraction, as described in 5 4 and $ 5 .  The 
second is the relative amplification of a long band of swell, which might be 
hidden in deeper water off-shore. 

Our quantitative analysis is applicable only so long as the waves are 
fairly low (see equation (5.14)), and does not apply to waves in shallow water 
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which have steepened at their crests, still less to breaking waves. For 
these, some of the effects described may still be true qualitatively, but non- 
linear effects such as those pointed out by Jeffreys (1924) must also be taken 
into account. 

APPENDIX 
Some of the effects described in the present paper are clearly illustrated 

by the aerial photograph shown in plate 1, for which I am indebted to 
Mr W. W. Williams. This shows a very regular swell approaching a 
coastline in a gradually diminishing depth of water. Not only do the 
mean wavelength and direction vary, but it will be seen that the wave 
crests arrange themselves in an Cchelon pattern with an angle of skewness 
that becomes very pronounced inshore. Lines of low wave amplitude 
may be traced visually over limited distances, and are not unlike those in 
figure 3 (a). 
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Plate 1. Aerial photograph of regular swell approaching a coastline obliquely. 




